Physiologically-based pharmacokinetic modelling of transporter

Private
Public

Physiologically-based pharmacokinetic modelling of transporter-mediated hepatic disposition using the imaging biomarker gadoxetate (Conference Abstract)

  • 117

Publications
Take a look

Conference Abstract: PBPK modelling of transporter-mediated hepatic disposition

Physiologically-based pharmacokinetic modelling of transporter-mediated hepatic disposition using the imaging biomarker gadoxetate (Conference Abstract)

Daniel Scotcher, Sirisha Tadimalla, Adam Darwich, Sabina Ziemian, Kayode Ogungbenro, Gunnar Schütz, Steven Sourbron, Aleksandra Galetin


ISSX conference 2019.

Abstract

Physiologically-based pharmacokinetic (PBPK) modelling provides a framework for in vitro-in vivo extrapolation (IVIVE) of drug disposition. However, prediction of transporter-mediated processes and tissue permeation remains challenging due to the lack of available in vivo tissue data for validation. Gadoxetate is a magnetic resonance imaging (MRI) contrast agent used clinically for hepatic lesion characterisation. As a substrate of organic anion transporting polypeptide 1B1 (OATP1B1) and multidrug resistance-associated protein 2 (MRP2), gadoxetate is being explored as a novel imaging biomarker for hepatic transporter function in context of evaluation of drug-drug interactions and drug induced liver injury [1]. The current study aimed to characterise uptake kinetics of gadoxetate in plated rat hepatocytes and develop a PBPK model to predict gadoxetate in vivo plasma and liver exposure. In vitro uptake was measured by incubating rat hepatocytes with 0.01 – 10mM gadoxetate for 0.5 – 150 min. Relevant in vitro transporter kinetic parameters were derived using a mechanistic cell model [2]. Subsequently, a novel PBPK model was developed for gadoxetate in rat, where liver uptake and cellular binding were informed by IVIVE. Gadoxetate in vivo blood, spleen and liver data obtained in the presence (n=9) and absence (n=27) of a single 10 mg/kg intravenous dose of rifampicin [3] were used for PBPK model validation/refinement. In vitro gadoxetate uptake affinity constant (Km) obtained in rat hepatocytes was 0.106 mM (n=4 rats), with saturable active transport accounting for 94% of gadoxetate cellular uptake; bidirectional transport, not saturable under current experimental conditions, was minor. The fraction unbound in hepatocytes was estimated to be 0.65. The total (Kp,u) and unbound (Kp,uu) hepatocyte:media partition coefficients were 26.0 and 16.9, respectively. The PBPK model successfully predicted gadoxetate concentrations in systemic blood and spleen and corresponding 2-fold increase in gadoxetate systemic exposure in the presence of rifampicin. In contrast, liver concentrations were under-predicted. Refinement of the PBPK model using the dynamic contrast agent enhanced (DCE)-MRI data enabled recovery of the liver profile, assuming complete and partial inhibition of hepatic uptake and biliary efflux by rifampicin, respectively. The current study demonstrates utility of imaging data in validating and refining PBPK models for prediction of transporter-mediated disposition; considerations of interpretation of quantitative DCE-MRI data to inform PBPK models are discussed.

CONFERENCE ABSTRACT: PBPK MODELLING OF TRANSPORTER-MEDIATED HEPATIC DISPOSITION
Article categories

Ex vivo gadoxetate relaxivities in rat liver tissue and blood at five magnetic field strengths from 1.41 to 7 T

Private
Public

Ex vivo gadoxetate relaxivities in rat liver tissue and blood at five magnetic field strengths from 1.41 to 7 T

  • 113

Publications
Take a look

Gadoxetate Relaxivity in Different Liver Compartments

Ex vivo gadoxetate relaxivities in rat liver tissue and blood at five magnetic field strengths from 1.41 to 7 T

Sabina Ziemian, Claudia Green, Steven Sourbron, Gregor Jost, Gunnar Schütz, Catherine D.G. Hines


NMR in Biomedicine, 26 August 2020, e4401; doi:10.1002/nbm.4401

 

Abstract

Quantitative mapping of gadoxetate uptake and excretion rates in liver cells has shown potential to significantly improve the management of chronic liver disease and liver cancer. Unfortunately, technical and clinical validation of the technique is currently hampered by the lack of data on gadoxetate relaxivity. The aim of this study was to fill this gap by measuring gadoxetate relaxivity in liver tissue, which approximates hepatocytes, in blood, urine and bile at magnetic field strengths of 1.41, 1.5, 3, 4.7 and 7 T. Measurements were performed ex vivo in 44 female Mrp2 knockout rats and 30 female wild‐type rats who had received an intravenous bolus of either 10, 25 or 40 μmol/kg gadoxetate. T1 was measured at 37 ± 3°C on NMR instruments (1.41 and 3 T), small‐animal MRI (4.7 and 7 T) and clinical MRI (1.5 and 3 T). Gadolinium concentration was measured with optical emission spectrometry or mass spectrometry. The impact on measurements of gadoxetate rate constants was determined by generalizing pharmacokinetic models to tissues with different relaxivities. Relaxivity values (L mmol−1 s−1) showed the expected dependency on tissue/biofluid type and field strength, ranging from 15.0 ± 0.9 (1.41) to 6.0 ± 0.3 (7) T in liver tissue, from 7.5 ± 0.2 (1.41) to 6.2 ± 0.3 (7) T in blood, from 5.6 ± 0.1 (1.41) to 4.5 ± 0.1 (7) T in urine and from 5.6 ± 0.4 (1.41) to 4.3 ± 0.6 (7) T in bile. Failing to correct for the relaxivity difference between liver tissue and blood overestimates intracellular uptake rates by a factor of 2.0 at 1.41 T, 1.8 at 1.5 T, 1.5 at 3 T and 1.2 at 4.7 T. The relaxivity values derived in this study can be used retrospectively and prospectively to remove a well‐known bias in gadoxetate rate constants. This will promote the clinical translation of MR‐based liver function assessment by enabling direct validation against reference methods and a more effective translation between in vitro findings, animal models and patient studies.

GADOXETATE RELAXIVITY IN DIFFERENT LIVER COMPARTMENTS
Article categories
Subscribe to Liver